Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Data and Knowledge Engineering ; 144, 2023.
Article in English | Scopus | ID: covidwho-2246068

ABSTRACT

Speaker diarization is the partitioning of an audio source stream into homogeneous segments according to the speaker's identity. It can improve the readability of an automatic speech transcription by segmenting the audio stream into speaker turns and identifying the speaker's true identity when used in combination with speaker recognition systems. Generally, the automatic speaker diarization is done based on two phases, like the transformation of audio segments into feature representation and the clustering. In this paper, clustering along with a hybrid optimization technique is carried out for performing the speaker diarization. For that, the extracted features from the audio signal is processed under speech activity prediction in order to identify the speak segments. The diarization process is done by Deep Embedded Clustering (DEC) in which the constants are trained by the developed Fractional Anticorona Whale Optimization Algorithm (FrACWOA). The FrACWOA is a hybrid optimization technique, which is designed by adapting the concept of fractional theory, precaution behaviour of COVID-19 and hunting performance of whales. DEC performs the diarization, which concurrently learns the representation of features as well as cluster assignments with neural networks. Using a mapping from the information space to a lower-dimensional feature space, DEC repeatedly discovers the most effective solution for a clustering objective. On the basis of testing accuracy, diarization error, false discovery rate (FDR), false negative rate (FNR), and false positive rate (FPR) of 0.902, 0.627, 0.276, 0.117, and 0.118, respectively, the developed FrACWOA+DEC algorithm performed much better with six speakers using the EenaduPrathidwani dataset. Comparing the accuracy of the proposed method to existing approaches such as Active learning, DE+K-means, LSTM, MCGAN, ANN-ABC-LA, and ACWOA+DFC, the accuracy of the proposed method is 12.97%, 10.31%, 9.75%, 7.53%, 4.32%, and 2.106% higher when using 6 speakers. © 2022 Elsevier B.V.

2.
Concurrency and Computation-Practice & Experience ; 2023.
Article in English | Web of Science | ID: covidwho-2241979

ABSTRACT

The precise forecasting of stock prices is not possible because of the complexity and uncertainty of stock. The effectual model is needed for the triumphant assessment of upcoming stock prices for several companies. Here, an optimized deep model is utilized to effectively predict the stock market using the spark framework. Here, the data partitioning is done using deep embedded clustering, wherein the tuning of parameters is done using the proposed Jaya Anti Coronavirus Optimization (JACO) algorithm in the master node. The proposed JACO is developed by combining Jaya Algorithm and Anti-Coronavirus Optimization algorithm. Then, important technical indicators are mined from divided data in slave nodes. Here, the technical indicators are considered features for enhanced processing. Then, data augmentation is done to make data suitable for processing in the master node. At last, the prediction was done in the master node using deep long short-term memory (Deep LSTM), and training is performed with the proposed JACO. The proposed JACO-based Deep LSTM attains the smallest mean absolute error of 0.113, mean squared error of 0.095, and root mean squared error of 0.309.

3.
Data & Knowledge Engineering ; : 102121, 2022.
Article in English | ScienceDirect | ID: covidwho-2122412

ABSTRACT

Speaker diarization is the partitioning of an audio source stream into homogeneous segments according to the speaker’s identity. It can improve the readability of an automatic speech transcription by segmenting the audio stream into speaker turns and identifying the speaker’s true identity when used in combination with speaker recognition systems. Generally, the automatic speaker diarization is done based on two phases, like the transformation of audio segments into feature representation and the clustering. In this paper, clustering along with a hybrid optimization technique is carried out for performing the speaker diarization. For that, the extracted features from the audio signal is processed under speech activity prediction in order to identify the speak segments. The diarization process is done by Deep Embedded Clustering (DEC) in which the constants are trained by the developed Fractional Anticorona Whale Optimization Algorithm (FrACWOA). The FrACWOA is a hybrid optimization technique, which is designed by adapting the concept of fractional theory, precaution behaviour of COVID-19 and hunting performance of whales. DEC performs the diarization, which concurrently learns the representation of features as well as cluster assignments with neural networks. Using a mapping from the information space to a lower-dimensional feature space, DEC repeatedly discovers the most effective solution for a clustering objective. On the basis of testing accuracy, diarization error, false discovery rate (FDR), false negative rate (FNR), and false positive rate (FPR) of 0.902, 0.627, 0.276, 0.117, and 0.118, respectively, the developed FrACWOA+DEC algorithm performed much better with six speakers using the EenaduPrathidwani dataset. Comparing the accuracy of the proposed method to existing approaches such as Active learning, DE+K-means, LSTM, MCGAN, ANN-ABC-LA, and ACWOA+DFC, the accuracy of the proposed method is 12.97%, 10.31%, 9.75%, 7.53%, 4.32%, and 2.106% higher when using 6 speakers.

SELECTION OF CITATIONS
SEARCH DETAIL